Structural, Magnetic and Acetone Sensing Properties of Barium- Calcium Hexaferrite Synthesized by Sol- Gel Auto Combustion Method

Authors

  • Kalantar, M. Engineering Faculty of Mining and Metallurgy, Yazd University, Yazd, Iran.
  • Karimian, A. Engineering Faculty of Mining and Metallurgy, Yazd University, Yazd, Iran.
Abstract:

In this research, barium calcium hexaferrite (Ba1-xCaxFe12O19 , 0≤x£1) nanoparticles were synthesized through a sol-gel combustion method. The dried gel samples were then calcined at 950ᵒC for 4:30h. The phase and microstructural evolution of calcined samples were investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results revealed formation of calcium -barium hexaferrite phase with a small amount of hematite as a secondary phase.  The average particle size is between 60-100 nm and the particle morphology is hexagonal or plate like structure. Results of a vibrating sample magnetometer (VSM) showed that the sample with x=0.4, exhibited the lowest value of saturation magnetization in comparison with others. This could be due to structural heterogeneity and presence of higher amounts of non- magnetic phases (BaFe2O4 and Fe2O3) in this sample compared to others. The results of sensory testing in acetone gas showed that the barium-calcium hexaferrite sample with x=0.2 had the highest sensitivity (0.28) and shortest response (15s) at a concentration of 900 ppm and a temperature of 200 °C despite of the long recovery time. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Microstructure and Magnetic Properties of Sr2Co1.7Mg0.3Fe11.2 Hexaferrite Synthesized by Auto-Combustion Sol-Gel Method

A single phased Y-type hexagonal ferrite Sr2Co1.7Mg0.3Fe11.2Sn0.4Zn0.4O22 was synthesized by the sol–gel auto combustion method. Structural and magnetic properties of this composition of Y-type hexagonal ferrite have been investigated. The X-ray diffraction (XRD) patterns confirm single phase Y-type hexagonal ferrite and various parameters such as lattice constants and cell volume have been cal...

full text

Phase Formation, Microstructure and ‎Magnetic Properties of BiFeO3 Synthesized ‎by Sol-Gel Auto Combustion Method Using ‎Different Solvents

In this research nano particles of bismuth ferrite (BiFeO3) were synthesized by sol-gel auto-combustion route. The effect of water and ethylene glycol solvents were studied on phase constituents, magnetic properties and microstructure of the bismuth ferrite by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibration sample magnetometer (VSM) techniques. XRD resul...

full text

Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method

In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achi...

full text

The effect of molar ratio on structural and magnetic properties of BaFe12O19 nanoparticles prepared by sol-gel auto-combustion method

Nanocrystalline particles of barium hexaferrite has been prepared by the sol–gel auto- combustion method using iron and barium nitrate with a Ba:Fe molar ratio of 1:10. The effect of fuel such as citric acid and aspartic acid was investigated on the structure and magnetic properties of nanoparticles. The results revealed that the formation of barium hexaferritefine particles is influenced by mo...

full text

The effect of molar ratio on structural and magnetic properties of BaFe12O19 nanoparticles prepared by sol-gel auto-combustion method

Nanocrystalline particles of barium hexaferrite has been prepared by the sol–gel auto- combustion method using iron and barium nitrate with a Ba:Fe molar ratio of 1:10. The effect of fuel such as citric acid and aspartic acid was investigated on the structure and magnetic properties of nanoparticles. The results revealed that the formation of barium hexaferritefine particles is influenced by mo...

full text

the effect of molar ratio on structural and magnetic properties of bafe12o19 nanoparticles prepared by sol-gel auto-combustion method

nanocrystalline particles of barium hexaferrite has been prepared by the sol–gel auto- combustion method using iron and barium nitrate with a ba:fe molar ratio of 1:10. the effect of fuel such as citric acid and aspartic acid was investigated on the structure and magnetic properties of nanoparticles. the results revealed that the formation of barium hexaferritefine particles is influenced by mo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 39  issue 1

pages  13- 27

publication date 2020-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023